ON-LINE BUSHING MONITORING
PARAMETER CHALLENGES
CON DENSER BUSHING CONSTRUCTION AND KEY COMPONENTS

The C_1 capacitance is the capacitance between the center conductor and the tap.

The C_2 capacitance is the capacitance from the tap to ground.
TYPES OF BUSHINGS REGARDING TECHNOLOGY

Oil impregnated paper bushing (OIP)
- Oil level gauge
- Expansion housing
- Oil impregnated Paper
- Oil impregnated paper/foils
- Flange
- Bottom side porcelain

Resin impregnated paper bushing (RIP)
- Oil or Gel filling
- Resin impregnate Paper
- Resin impregnated paper/foils
- Flange

Resin bounded paper bushing (RBP)
- Thick Oil filling
- Resin bounded paper/graphite
- Flange
- Varnished or painted surface
TYPES OF BUSHINGS REGARDING TECHNOLOGY

Resin impregnated synthetics bushing (RIS)

SF6 filled hollow insulator bushing (for GIS)

DIN Bushings (porcelain or silicon – up to 36kV)

For these two types of bushings, no tan δ and capacitance measurements are possible. There is no condenser body (no measuring layer) existing.
TRANSFORMER FAILURE STATISTICS

- The newest transformer statistic shows, that in case of substations bushings contribute with 17% to the total failure rate of transformers.
- In case of generator step-up transformers, bushings contributing with 9%
- More than 50% of bushing failures are catastrophic
- 70% of catastrophic transformer failures are based on bushings

<table>
<thead>
<tr>
<th>FAILURES & POPULATION INFORMATION</th>
<th>HIGHEST SYSTEM VOLTAGE [kV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69 kV < 100</td>
</tr>
<tr>
<td>Failures</td>
<td>145</td>
</tr>
<tr>
<td>Transformer- Years</td>
<td>15220</td>
</tr>
<tr>
<td>FAILURE RATE/ YEAR</td>
<td>0.95%</td>
</tr>
</tbody>
</table>

Source: WG A2.37, Transformer Reliability Survey: Interim Report, No. 261 -April 2012 ELECTRA
TYPICAL BUSHING DEFECTS

- Insulation ageing
 - Oil
 - Paper

- Moisture

- Voids/Delamination's

- Surface contamination

- Surface discharges (no real defect)

- Partial breakdowns (short circuit between layers)

- Contact problems
POWER FACTOR \((\approx \tan \delta) \)

Equivalent circuit

\[\tan \delta = \text{Dissipation Factor (DF)} \]

\[\text{DF} = \text{Power Factor (PF)} \text{ – for small } \delta \]

Phase angle between the applied voltage across a capacitance and the total current through the capacitance

- Power = Voltage \((E) \times \) Current \((I_t) \times \) Cosine \((f) \)
- Watts = \(E \times I_r \)
- Watts = \(E \times I_t \times \text{Cosine}(f) \)
- PF = \(\text{Cosine}(f) = \frac{\text{Watts}}{E \times I_t} = \frac{E \times I_r}{E \times I_t} = \frac{I_r}{I_t} \)

If \(I_r \) increases \(f \) decreases and PF increases
SOME ADDITIONAL ON MOISTURE IN INSULATION OF BUSHINGS

The difference in tan δ at 20°C for Bushings with moisture is small. For higher temperatures the tan δ gradient is increasing and the moisture content is more clearly to detect. Nevertheless the difference between a dry and a wet bushing could be at 40°C 0.2%, which still needs a high accuracy to detect moisture/insulation aging early enough.

\[D_{20\tan} < D_{40\tan} \leq D_{60\tan} \]

Valid for wet bushings only!
CAPACITANCE

In bushings there are several capacitors in series.

- When a capacitor layer shorts out, the value of the capacitance will always increase.
- The capacitors in series act as a voltage divider.
- If a capacitor shorts out, the voltage at the tap will increase in proportion.
- Also, as the voltage varies, the leakage current will vary.
- Therefore, if the voltage increases, there will be an increase in leakage current.

\[
\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4} + \frac{1}{C_5} + \frac{1}{C_6} + \frac{1}{C_7} + \frac{1}{C_8} + \frac{1}{C_9} + \frac{1}{C_{10}} + \frac{1}{C_{11}} + \frac{1}{C_{12}} + \frac{1}{C_{13}} + \frac{1}{C_{14}}
\]
ON-LINE BUSHING MONITORING PARAMETERS CHALLENGES

PARTIAL DISCHARGE

Advantage:
• Can be measured with conventional PD techniques
• Gives an early warning before the oil or the solid insulation system is partly damaged

Disadvantage:
• Very difficult to determine between external and internal discharges
• Bushing discharges are usually small compared to corona discharges or discharges out of the transformer tank. Therefore most of the time the discharges of the bushing itself will not be early enough detected.

Discharges on overhead lines/ bushing surface	up to some nC
Typical PD level for bushing faults	5pC up to 100 pC
Accepted discharges inside transformer	500pC up to 1 nC

Due to the low level of expected internal PD caused by bushings, the Bushing PD will be hid behind the discharges coming from transformer or outside. The determination where the discharges are coming from is also very difficult for online purpose.
ON-LINE BUSHING MONITORING BALANCED CURRENT METHOD

BALANCE CURRENT METHOD

• Assumption: all phases will have absolutely the same voltage amplitude and the phase angles between the phases are perfectly 120 degrees.

• Under these circumstances (assuming all bushings have the same temperature and the same condition) the sum of all bushing leakage currents will be zero.

• A change in the amplitude of a single leakage current will be counted as a capacity increase.

• An increase of the current sum without increased single leakage current is counted as Power Factor (Dissipation Factor) increase of a certain bushing.

• In reality the phase voltages and angles are fluctuating according to the balance of the load and the network conditions.

CONCLUSION

The fluctuation of the measured values prevents the detection of changes of the insulation system caused by, e.g., moisture or creeping degradation or aging. Only changes in capacitance (partial breakdowns) or big changes in Dissipation factor (Power factor) can be detected.
ON-LINE BUSHING MONITORING BALANCED CURRENT

SOME THOUGHTS ABOUT INACCURACY REGARDING TYPICAL PHASE AND VOLTAGE ASYMMETRIES DUE TO UNBALANCED LOAD:

1. Considering typical phase and voltage asymmetries (0.2 degree for the phase and 1.0% for the voltage), the following deviations for the leakage currents of the different phases can be assumed:
 • 1 to 1.5% in amplitude (follows the voltage)
 • 0.2 degree in angle
 • Comparing the leakage currents of different phases that will result in an error of:
 - 1 to 1.5% in the capacitance determination
 - 0.0035 in tan δ absolute (absolute tan δ value for a typical RIP Bushing is 0.00325)

2. While the capacitance inaccuracy can be compensated by consideration of the real phase voltage, the phase angle imbalance is difficult to compensate.

3. As result, changes caused by degradation of insulation material and moisture hardly can be clearly detected.
BUSHING MONITORING REFERENCE SIGNAL METHOD

REFERENCE METHOD

- The phase difference of the bushing leakage current and the reference voltage will be measured
- 90° - phase difference represents the angle Delta
- The phase difference represents direct the angle Phi
- By using the RMS value of the leakage current and the RMS value of the phase voltage the capacitance can be calculated.
- Bushings measured independently

CONCLUSION

Applying advanced software algorithms for noise and disturbance reduction allows achieving a high accuracy in phase difference measurement.
ON-LINE BUSHING MONITORING PHASE SHIFT METHOD

SIGNAL PROCESSING

• Noise and harmonics needs to be eliminated by advanced software algorithms

• The accuracy of the phase measurement is better then 0.1 mrad (0.0057 Degree)

• The accuracy enables to detect changes in tan δ form e.g. 0.325% to 0.340%

• That enables to detect moisture increase, insulation system aging and degradation early enough

• Temperature compensation will be necessary to achieve this accuracy
CONCLUSION

1. By using a reference signal for online Power Factor measurements on bushings, each bushing can be measured separately and independent from each other.

2. Using the reference signal from the same phase as the bushing is connected too, the fluctuation of the measured Tan Delta (Power Factor) values can be reduced and the accuracy can be increased to detect even upcoming faults connected to moisture problems or other faults in an easy stage.

3. As there are not always VT available (or only in one phase) alternative methods, described for example in different papers looking promising and will be further tested.
FOR MORE INFORMATION ON PRODUCTS AND SOLUTIONS

Contact us info@qualitrolcorp.com